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Abstract—1It is observed that distinct words in a given
document have either strong or weak ability in delivering facts
(i.e., the objective sense) or expressing opinions (i.e., the subjective
sense) depending on the topics they associate with. Motivated
by the intuitive assumption that different words have varying
degree of discriminative power in delivering the objective sense
or the subjective sense with respect to their assigned topics, a
model named as identified objective—subjective latent Dirichlet
allocation (LDA) (iosLDA) is proposed in this paper. In the
iosLDA model, the simple Pélya urn model adopted in traditional
topic models is modified by incorporating it with a probabilistic
generative process, in which the novel “Bag-of-Discriminative-
Words” (BoDW) representation for the documents is obtained;
each document has two different BoDW representations with
regard to objective and subjective senses, respectively, which
are employed in the joint objective and subjective classification
instead of the traditional Bag-of-Topics representation. The
experiments reported on documents and images demonstrate
that: 1) the BoDW representation is more predictive than the
traditional ones; 2) iosLDA boosts the performance of topic
modeling via the joint discovery of latent topics and the different
objective and subjective power hidden in every word; and
3) iosLDA has lower computational complexity than supervised
LDA, especially under an increasing number of topics.

Index Terms—Latent Dirichlet allocation (LDA),
variable model, supervised learning, topic modeling.

latent

I. INTRODUCTION

HERE is a growing demand of automatical analysis on

the multimodal data (e.g., electronic documents, images,
audio and video data, and so on) that can be easily found
and obtained from the Internet. So far, various machine learn-
ing algorithms have been employed in accessing, retrieving,
clustering, and summarizing the data. Among them, topic
models [1] are more and more popular due to their ability to
efficiently discover the latent structure embedded over a group

Manuscript received November 24, 2015; revised May 3, 2016; accepted
October 26, 2016. This work was supported in part by the National Basic
Research Program of China under Grant 2015CB352300, in part by NSFC
under Grant U1509206, Grant 61572431, and Grant 61472353, in part by
the China Knowledge Centre for Engineering Science and Technology, and
in part by the Fundamental Research Funds for the Central Universities.
(Corresponding Author: F. Wu).

H. Wang, F. Wu, W. Lu, Xi Li, and Y. Zhuang are with the College of
Computer Science and Technology, Zhejiang University, Hangzhou 310027,
China (e-mail: hangiw@zju.edu.cn; wufei@zju.edu.cn; luwm@zju.edu.cn;
xilizju@zju.edu.cn; yzhuang @zju.edu.cn).

Y. Yang is with the Center for Quantum Computation and Intelligent
Systems, University of Technology Sydney, Ultimo, NSW 2007, Australia
(e-mail: yi.yang@uts.edu.au).

Xuelong Li is with the Center for OPTical IMagery Analysis and Learning
(OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences,
Xi’an 710119, China (e-mail: xuelong_li@opt.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2016.2626379

of documents and provide low-dimensional representation for
large-scale data. The earliest topic model is probabilistic latent
semantic analysis (pLSA) [2] that evolves from LSA [3].
As a latent variable model [4], it is the first to capture
the hidden semantics (i.e., the fopics) conveyed by different
words during the modeling of documents. In pLSA, docu-
ments are projected into a low-dimensional topic space by
assigning each word with a latent topic, where each topic
is usually represented as a multinomial distribution over a
fixed vocabulary. While various extensions of pLSA have
been proposed in recent years [5]-[7], the most famous and
successful one among them remains to be latent Dirichlet
allocation (LDA) [8]. The LDA model inherits the notion
of pLSA, but it employs a generative process on the topic
proportion of each document and models the whole corpus via
a hierarchical Bayesian framework [9]. In fact, pLSA turns out
to be a special case of LDA with a uniform Dirichlet prior
in a maximum a posteriori model [10], while LDA has a
better ability of modeling large-scale documents for its well-
defined a priori. In the past decade, topic models, especially
the LDA model, have been intensively studied [11]-[13] and
widely applied for many different tasks [14]-[18].

As an unsupervised model, the original LDA model is
built based on the “Bag-of-Words” (BoW) representation,
where the documents are treated as unordered collections
of words, disregarding any linguistic structures embedded
in them. The BoW representation and the LDA framework
have also been applied for image clustering after the low-
level visual features of given images are extracted as the
visual words. In spite of the convenience in modeling and
computation, this traditional approach brings about, however,
the latent representation learned by LDA has been criticized
for several deficiencies [19], and it is often found not to be so
strongly predictive [20]. As a matter of fact, the unsupervised
manner employed in LDA unfortunately loses sight of the
nature of various discriminative tasks, such as classification
and regression, and thus provides no guarantee on the effec-
tiveness of the learned representation. On the other side, it
is often easy to obtain some useful auxiliary information [21]
(e.g., the category labels or the ratings provided by the authors)
along with the input documents in many practical applications.
Therefore, much effort has been devoted to leveraging such
auxiliary information and developing supervised extensions
of the traditional LDA model in order to generate latent
representation that is more predictive for the discriminative
tasks [4]. In supervised topic models, such as supervised LDA
(sLDA) [22], multiclass sLDA [23], and TLDA [24], each
label attached to its corresponding document is modeled as the
response variable predicted based on the latent representation
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of the document that generated during the process of topic
modeling.

So far, most supervised extensions of LDA utilize the
Bag-of-Topics (BoT) representation of one document for the
prediction of its corresponding label, in which the proportion
of topics (instead of the word proportion in BoW) in the
document is considered to be the predictive feature. That is,
any two of the various words in the vocabulary are equal once
they are assigned with the same topic. However, it is intuitive
that distinct words in a given document have either strong
or weak ability in delivering facts (i.e., the objective sense)
or expressing opinions (i.e., the subjective sense) depending
on their assigned topics [25], [26], which endows them with
varying degree of discriminative power in terms of objective
and subjective senses.

Three examples are presented here to illustrate this
assumption.

1) Given an article from the newspaper, the word “plant”
in the topic “nuclear crisis” highly tends to indicate
one particular object (a nuclear plant), and is, therefore,
strongly predictive in the objective (category) classifica-
tion of the article. On the contrary, when this word is
assigned with the topic “landscape,”’ it probably refers to
the whole scene and is, therefore, weak in the objective
sense.

2) Compare the aforementioned word “plant” with another
word “reactor” after assigning both of them with the
topic “nuclear crisis.” They are both strongly discrim-
inative in the objective sense, while the word “reactor”
is more powerful than the word “plant,” since the latter
is also likely to remark plants growing near the nuclear
reactors.

3) Given one word “bug” from a bunch of documents,
it apparently remarks one object (one kind of insects)
when assigned with the topic “order Hemiptera,” while
the same word under the topic “software” probably
conveys a negative opinion in sentimental identification.

Thus, it becomes imperative to first deliberately characterize
the different objectively or subjectively discriminative power
of the words in the documents with respect to their involved
topics, and then benefit from such identification in constructing
a more predictive representation of each document. As a
result, a supervised approach named as identified objective—
subjective LDA (iosLDA) is proposed in this paper that
extends the basic framework of multiclass sSLDA in many
aspects. In the iosLDA model, the simple Pélya urn (SPU)
model followed by traditional topic models is modified by
incorporating it with a probabilistic generative process to
obtain the novel “Bag-of-Discriminative-Words” (BoDW) rep-
resentation for the documents. Each document has two BoDW
representations with regard to objective and subjective senses,
respectively, which are then employed in the joint objective
and subjective classification. The BoDW representation and
the whole procedure of the iosLDA model are shown in Fig. 1
as well as the traditional methods. The iosLDA possesses the
attractive ability of naturally tapping into the different powers
of various words in delivering either an objective or a subjec-
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tive sense in one given document, while it jointly imposes the
auxiliary information in terms of both objective and subjective
senses to boost the performance of latent representation (i.e.,
topic modeling). Results of several experiments demonstrate
that BoDW is more predictive for discriminative tasks than
the traditional BoW and BoT representation employed in the
current methods.

II. RELATED WORK

The sLDA [22] model is a natural supervised extension
of the traditional LDA model. Inheriting the hierarchical
Bayesian structure that adopted in traditional LDA, sLDA is
capable to properly handle labeled documents by adding to
the model a response variable associated with each document.
As mentioned before, SLDA jointly models the documents
and the responses, and then, the responses are predicted by
the latent topics discovered in their corresponding documents
(i.e., BoT). The sLDA is initially proposed for documents with
unconstrained real-valued labels, where the response value is
produced from a normal linear model. However, sLDA the-
oretically accommodates various types of response (e.g., real
or discrete values, nonnegative values, multiclass labels, and
so on) when cooperated by a generalized linear model [27],
which makes it easily extended for many kinds of discrimina-
tive tasks. The multiclass sLDA model is implemented in [23]
for analyzing images in different categories. To simultaneously
model the visual words in images and the textual words
annotated for each image while performing classification, the
authors further proposed multiclass sLDA with annotation that
combines corresponding LDA [14] and softmax regression
in a joint framework. In such an approach, both the visual
and textual words are latent variables while some of them
share the same topic, based on which the aforementioned BoT
representation is generated for prediction. As another famous
variant of sSLDA, tLDA [24] aims to stride across the language
gap between documents with different technicalities (e.g., a
news report and its related journal article). In the rLDA model,
each word is assigned with a binary selector to determine
whether it is a technical word. All the assigned selectors in
one document form the latent representation, based on which
the document technicality is predicted via a cosine regression
model.

While the traditional SLDA model (including its multiclass
variant) is capable for almost any kinds of discriminative tasks,
such as classification and regression, it lacks the ability to
perform both objective and subjective identification of given
data at the same time. Several approaches, therefore, have been
proposed to discover both topics (i.e., the objective sense)
and sentiments (i.e., the subjective sense) in a collaborative
manner. For instance, Mei et al. [25] propose an approach to
model the mixture of topics and sentiments in weblogs, named
as topic-sentiment mixture. Multigrain LDA [28] is built later
that aims to extract and aggregate specific sentimental words
related to different topics. The joint sentiment-topic (JST)
model and its reparameterized version (reversed JST) [29]
are designed to explicitly identify the sentimental polarities
expressed by words in documents, and is capable for mining
the content of different sentiments in terms of one given topic.
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Intuitive illustration of three document representations, namely, the BoW model, the BoT model, and the BoDW model proposed in this paper.

Different shapes indicate distinct words, while different colors indicate different topics. The shapes marked with letter “O” indicate that these words have
the discriminative power to deliver the objective sense, and those with letter “S” tend to convey the subjective sense. For simplicity, there are in total three
words and two topics in this document, while the frequency of the words with discriminative power in the objective or the subjective sense is multiplied by
four in the corresponding BoDW representation as a toy example. The document representation in terms of BoDW is particularly appropriate for discriminant
analysis (e.g., document classification or sentiment identification) owing to its nature of disentangling the discriminative words with respect to their topics. In
contrast, in the BoW and BoT representation, all of the words are equally employed to the classification tasks no matter how discriminative or trivial these

words are with respect to their assigned topics (best viewed in color).

All these aforementioned methods conduct an unsupervised
manner in discovering the latent sentiments as well as the
topics, and represent the documents via BoT or its equivalent
(i.e., the representation constituted by the proportion of latent
variables). Thus, they are not as predictive as the traditional
sLDA model in the discriminative tasks.

The Po6lya urn model [30] is a type of statistical model that
treats objects under analysis as colored balls and their groups
or containers as urns. In the perspective of topic modeling,
an individual word in the given document can be treated
as a ball of a certain color indicating its uniqueness in the
vocabulary, while each topic is seen as an urn. The word
distribution in terms of different topics is the equivalent to
the color proportion of balls in the corresponding urns. The
original LDA model adopts the SPU model that when a ball
in one certain color (i.e., one word) is drawn from an urn (i.e.,
its assigned topic), it is observed and then put back into the
urn with an additional ball of the same color (i.e., the same
word). The SPU model endows traditional LDA with a self-
reinforcing property known as “the rich get richer.” Instead of
the SPU model, the generalized Pélya urn (GPU) model [31]
is later introduced into topic modeling in order to incorporate
the corpus-specific word co-occurrence information. The GPU
model goes a step further that after a ball with certain color
(i.e., one word) in an urn (i.e., its assigned topic) is drawn; not
only two balls with the same color, but also some balls with
other colors (i.e., some related words) are put back to the urn
together. The interaction of balls with different colors can be

configured by predefined rules or a priori knowledge [32].
In this paper, the employed Pélya urn model is modified based
on the SPU model that the number of balls to put back after
being observed is drawn by a certain kind of probabilistic
distribution, which is a brand new attempt to the best of our
knowledge.

Other than topic modeling, there are several kinds of
approaches reported to have the ability in discovering and
identifying the semantic information hidden in enormous
numbers of documents and images. For instance, nonnegative
matrix factorization (NMF) is another popular dimension-
reduction method that widely applied to image processing and
pattern recognition for its nonnegative constraints that allow
only additive combinations and lead to naturally sparse and
parts-based representations, while it deals with large-scale data
sets in high efficiency with an online algorithm employed [33].
NMF essentially gives similar results of reduction as LDA,
except for the specific assignment of topics to each word,
while the results are not necessarily normalized [34].
Besides, some of the works in neural network also demonstrate
their effectiveness in topic modeling [35]-[37]. As a matter
of fact, such neural network models are either directed or
undirected latent variable models as well as the Bayesian
models, such as LDA, and the hidden layer in their model
is commonly treated as the “topics.” While the neural mod-
els find out the most representative words in each topic
according to the largest weights connected to the hidden
layer, they lack the ability to discover the significance of
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TABLE I
NOTATIONS USED IN THE iosLDA MODEL

Notation Description
D the number of documents
Ny the number of words in the d* document
K the number of the topics hidden in the corpus
\% the size of the vocabulary
O the number of distinct objective labels
S the number of distinct subjective labels
Wa,;i the 4" word in the d* document
2d,i the topic assignment of wq ;
N the objective label of the d*" document
yé‘ the subjective label of the d*? document
04 the topic proportion specific to the d* document
bk the word proportion specific to the k" topic
the probability of different values that may taken
)\gv by an objective impact scaler, whose corresponding
7 word is v under the k'P topic
the probability of different values that may taken
Af » by an subjective impact scaler, whose corresponding
' word is v under the kP topic
« the Dirichlet a priori of all the topic proportion 6
B the Dirichlet a priori of all the word proportion ¢
~© the Dirichlet a priori of all the proportion A€
~5 the Dirichlet a priori of all the proportion A
n© parameters of softmax regression
ns parameters of softmax regression

the topics in different documents, which may suggest that
they are incomplete topic models. Finally, compared with
all the aforementioned approaches, LDA and its variants
can easily incorporate various kinds of prior knowledge in
their model due to the Bayesian techniques they adopt, and
avoid several kinds of drawbacks, such as the dependence
on initialization, overfitting, and noise-level underestimation
problems [38].

III. josLDA MODEL
A. Formulation

Table I gives out the notations used in this paper. Assume
that there are in total D documents in the data set. The
dth document has N; words, while all the distinct words
in the whole data set form a vocabulary of size V. Each
document has exactly one objective label (e.g., the mainly
mentioned book or movie) and one subjective label (e.g.,
the delivered positive or negative sentiment, or some much
more fine-grained categories). The whole data set, therefore,
contains O different objective labels and S distinct subjective
ones, respectively. In addition, we assume that the number
of total topics hidden in the data set (i.e., K) is a priori
specified and fixed, while it can be determined during model
selection [39] in practice. As in the traditional LDA and
sLDA model, topic proportion  in terms of each document is
repeatedly drawn from its K-dimensional Dirichlet a priori
with parameter «, while the topic assignment z of each word
is conditioned on #. The word proportion ¢ specific to the
topics is smoothed by endowing it with a symmetric a priori,
i.e., the V-dimensional Dirichlet distribution with parameter /3,
and every word is then sampled according to ¢., where z is
its topic assignment.

After all the topic assignments z are determined, traditional
supervised models [22], [23] directly utilize them to form the
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BoT representation of the documents, and learn the parameters
of the linear or softmax regression model under the assumption
that the label of each document is drawn conditioned on
the BoT representation. In contrast, iosLDA assumes that
different words have their intrinsic different powers in deliv-
ering the objective or the subjective sense with respect to
their assigned topics. Therefore, iosLDA modifies the SPU
model, which is the original sampling process of words given
their topic assignments: when a ball with one certain color
(i.e., one word) is drawn from its urn (i.e., the assigned
topic), the number of balls with the identical color to put
back is determined conditioned on a probabilistic distribution
specific to the urn and the color of the ball itself. That is,
different words will have various impact scalers with respect
to their assigned topics, that one word may be treated as
two or three similar words, while another word is ignored
if its corresponding scaler is zero. It is worth noting that
the probabilistic distribution in the modified model can be
any discrete one: the Poisson distribution, the multinomial
distribution, or even a fixed nonnegative integer (employed
as a toy example in Fig. 1). In the iosLDA model, the
impact scalers in terms of objective and subjective senses both
range from [0, L], and are conditioned on the multinomial
distribution with parameters ¢ and 15, respectively. Each
of the two distribution has Dirichlet a priori, namely, vy 0
and y 5. Each word is multiplied by its objective impact scaler
in the calculation of word frequency to constitute the BoDW
representation of the given documents in terms of objective
identification, and so do the subjective impact scalers work
with their corresponding words.

Denoting Dirichlet and mutinomial distribution as “Dir”
and “Multi,” respectively, the whole generative process of the
iosLDA model can be described as follows.

1) For each topic k, draw word proportion ¢ ~ Dir(f).

2) For each topic k and word w, the following holds.

a) Draw possibility ’1k0,w ~ Multi(y ©) for values of
the impact scalers in terms of objective sense.

b) Draw possibility l,f,w ~ Multi(y 5) for values of
the impact scalers in terms of subjective sense.

3) For each document d, the following holds.

a) Draw topic proportion 6; ~ Dir(a).
b) Sample each topic assignment z4,; ~ Mult(0y).
c) Sample each word wy,; ~ Mult(¢;, ;).
d) Sample each objective impact scaler
xdo,i ~ Mult(/IZOd,i;wd,i)'
e) Sample each subjective impact scaler
xg’i ~ Mult(is )

2d,i>Wd,i

f) Draw the objective label ydo that

exp (10" w9)
Zi0=1 exXp (’hOT_c(l))

p(yy = olwa, x$, n%) =

where

1 Ny
—O0 o
W, = — E Wa.iX7 ;.
d Nd SV i

i=1
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Fig. 2. Graphical model representation of (a) multiclass sLDA and
(b) iosLDA proposed in this paper. The central plates from outer to inner,
respectively, represent the documents and the words in each document.
The black round dots are the hyper parameters. The shaded nodes indicate
observations, while the others represent the latent variables in the model.
Besides, the black rectangles in (b) represent the modified Pdlya urn model,
in which the power (i.e., the frequency) of different words will be magnified
or reduced by their specific impact scalers.

g) Draw the subjective label yg that

exp (18 w5)
>3 exp (nf @)

p(yS = slwg, x3, 15) =

where

1
—S S
Wy = — E Wa.iXT ;.
d Nd ‘ S i

The graphical model representation of the proposed iosLDA
is shown in Fig. 2(a), which is compared with multiclass
sLDA in Fig. 2(b). Both of the two model are illustrated
with the notations in Table I, except that the single label
(either objective or subjective) attached to each document is
modeled as a distinct value ¢ in multiclass sLDA, ¢ € [1, C],
and multiclass sLDA predicts the labels based on a softmax
regression of parameter 7.

B. Training Process

An EM strategy is conducted to train the iosLDA model,
which consists of posterior inference and parameter estima-
tion. The posterior inference aims to obtain the conditional
distribution of the latent variables {0,¢,lo,k5,z,x0,xs}
given the observations {w, y?, yS}. This is an intractable
problem for most of topic models [8]; therefore, some approx-
imate methods are often taken as substitutes, among which
variational inference [8], Gibbs sampling [39], and expectation
propagation [40] are the popular ones. As in the iosLDA
model, the collapsed Gibbs sampling is conducted in the
E-step of the training process, where all the proportion 6, ¢,

A0, and A5 are integrated out first and the assignments z, x0,

and x5 are then iteratively sampled. Denoting {w, z, x9, x5,
yO, yS} as ® and {a, S, y o, yS, 770 775} as P, the rules for
updating the assignments in the Markov chain can be derived
as follows:
B i Tk wg
PGai =kI® oy, P) o (o +ng ) ot (1)
Zu:l (ﬁi) + nk,l))
0 o
7 T M w0
o0 sWd,i »
p(xd,- =1|®_ ov,‘I’) x
i Xd,i Z;:O ij + Nkwg

N,
exp (2 ’7;??,1

0
Wd,iX;j ;
04 ; d,i d,l)

x o Na 0
om1exp (2 ngwd,iwd,ixd,i)

(2)
S S
V0w
p(xg,i = llq)—xj-’ \P) X T S wq,
! ijo)’j + Mk, wa,
S
exp (ZH ’7ys was d,ixd,i)
X .
S
2 51 €Xp (Zi=1 Ws,wd,,»wd,ixii)
(3)

Here, ny x denotes the number of words in the dth document
assigned with the kth topic, while ni , denotes the times that
distinct word » occurring in the kth topic. nko,v,l and n,f,v,l
represent the number of the word v assigned with the kth
topic and impact selectors of value / in terms of objective and
subjective senses, respectively, where / € [0, L]. I'(:) is the
Gamma function that I'(x) = f0+°o *le~dr.

The full derivations of the sampling rules above are pre-
sented in the Appendix. It is worth noting that though the
generative process of iosLDA is much more sophisticated than
the traditional models, the topics are sampled as simply as
those in the original LDA model (and more conveniently than
sLDA), which endows it with high efficiency in calculation.

In the M-step of the training process, parameters 7 and
S are estimated via minimizing their corresponding softmax
cost functions. Denoting 1(-) as the indicator function that
1(true statement) 1, 1(false statement) = 0, the {c,v}
elements of their derivative matrices are taken as

__ZZI 01,1

1 0 i exp ( le:dl ”l?u)d’,' wd:i'xdo,i) 4
x[10d =1) - =5 Na 0 0 @)
Zo:l exp ( Zi:l no,wd,,- wd,lxd,i)

and

D
1 ZlOndvl

N,
B exp (Zizdl ’71S,wd,,- wdjixj,i)
S N,
De—rexp (20 ”iwd,iwd’ixii)

(5)

respectively, a gradient descent process can efficiently and
effectively accomplish the parameter estimation.
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C. Prediction

After properly trained, the proposed iosLDA is able to
predict both the objective and subjective labels of docu-
ments that are unseen before. The prediction process is equal
to calculating the expectation of response {y?, y5} given
{¢, 19,15}, In practice, we first run collapsed Gibbs sampling
on the unseen documents, and then take

E[y]]=max p(y{ = o|®_,0.¥.$.17) ©)
and

E[yj] = msax p(y‘;l9 = s|(I>_y5, Y, ¢, XS) 7

for the dth document. Here, the probability of y© and yS is
as the same as in the generative process.

IV. EXPERIMENTS
A. Data Sets

Data sets of two modalities (i.e., textual and visual data) are

conducted in our experimental comparisons.

1) Document Data Set: The Multidomain Sentiment Data
Set! is employed, which consists of a large number
of reviews about products (objective sense) as well as
their sentimental ratings (subjective sense) from Ama-
zon.com. English stop words and words occurring fewer
than ten times are removed during the preprocess, which
generates a vocabulary that is more effective.

2) Image Data Sets: Two data sets, namely, the Flickr
Data Set and the Twitter Data Set, are utilized for
evaluation. They are both proposed in [41]. The images
in Flickr Data Set are labeled by adjective—noun pairs
(ANP) (e.g., “sad man” or “happy family”), where the
adjective words are treated as the subjective descriptions
of the images and the noun words indicate their objective
senses. To make the data set more balanced, we use
the queries belonging to 24 ANPs to retrieve images
from the Internet. As for the Twitter Data Set, the
hashtags of images are taken as objective labels and
those images have been manually labeled as one of the
sentimental senses (i.e., positive, negative, or neutral).
On both of these data sets, the SIFT descriptors are
extracted as local features on each image, and then,
respectively, obtained a collection of 1000 visual words
as the codebook.

More detailed description of all the data sets can be found
in Table II. In the experiments, half of the documents and
images are chosen as the training data, while others are
employed for testing.

B. Comparative Approaches

Seven state-of-the-art methods, which are all discriminative
extensions of topic models, are involved in the experiments.
They are compared with three iosLDA-based models, two of
which are the variants of the complete iosLDA that proposed
in this paper.

1 http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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TABLE 11
STATISTICS OF DATA SETS

Multi-Domain Sentiment Dataset

documents 8,000
words 2,625,094
vocabulary size 32,347

objective labels
subjective labels

4: books, dvd, electronics, kitchen
2: positive, negative

Flickr Dataset

adjective-noun pairs

images 1,323
visual words 1,177,027
codebook size 1,000

24: angry dog, angry man, bright moon,
broken glass, crying baby, disgusted man,
fat girl, fat cat, fearful man, happy baby,
happy family, joyful dog, joyful man,

misty forest, misty lake, sad dog, sad man,
scary tree, sparkling water, surprised man,
wet cat, wet dog, scary monster, wet grass
objective labels 14
subjective labels 15

Twitter Dataset

images 595
visual words 855,268
codebook size 1,000

22: decemberwish, election, sandy, cancer,
blackfriday, religion, android, aids, nfl,
abortion, police, obama, globalwarming,

gaymarriage, championsleague, cairo, agt,

applefanboy, memoriesiwontforget,
hurricanesandy, newyork, zimmerman
3: positive, negative, neutral

objective labels

subjective labels

1) BoW + Support Vector Machine (SVM): This is one of

the traditional approaches to classify the documents, in
which the SVM is learned for classification based on the
BoW representation of the given documents.

2) BoW 4+ LR: Another traditional method for discrimi-

native tasks that similar to BoW+SVM, while logistic
regression is employed here instead of SVM.

3) LDA + SVM: LDA is originally an unsupervised model,

while the BoT representation it generates on given data
can be imposed by discriminative methods as the fea-
tures for prediction. LDA+SVM is a two-step approach
that LDA obtains BoT representation on both training
and test sets, and an SVM model is then learned and
utilized for classification.

4) LDA + LR: The framework of LDA+LR is exactly the

same to LDA+SVM, except that logistic regression is
employed here instead of the SVM model.

5) BoW + LDA + SVM: In this approach, both the tradi-

tional BoW representation and the BoT representation
generated by the original LDA model are employed,
which are combined as the feature of the given data.
Based on them, an SVM model is learned for classifi-
cation.

6) BoW + LDA + LR: The framework of this method

is exactly the same to BoW+LDA+SVM, except that
logistic regression is employed here instead of the SVM
model.

7) sLDA: The multiclass version of SLDA [23] is employed,

which is capable to jointly perform topic modeling and
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document classification. In the experiments, it takes
either the objective or the subjective label of given
documents as the response value, and predict the label
on testing data after it converges on the training set.

8) iosLDA-Single: In iosLDA, words have different pow-
ers, respectively, in delivering objective and subjective
senses. In order to validate that the identification of
objective and subjective power is attractive and effective
for different discriminant tasks, a variant of iosLDA
denoted as iosLDA-single is evaluated, in which the
objective and the subjective powers of each word are not
differentiated, and the two impact scalers of one word
are added up to be the total scaler of the word.

9) iosLDA-Binary: Another derived variant of iosLDA aim-
ing to examine the effectiveness of discovering different
degrees of discriminative power. In iosLDA-binary, all
the impact scalers that are either objective or subjective
have only two possible values: 0 and 1. Thus, all the
discriminative words have the equal power, while the
trivial words are simply ignored.

iosLDA-Complete: In the following part of this

paper, the complete model of iosLDA that com-

bines iosLDA-single and iosLDA-binary is denoted as
iosLDA-complete.

10)

The Gaussian kernel is adopted in the implemented SVM
algorithm. As the result of model selection, the number of
topics is set to be 20, and the hyper parameters are con-
figured that ¢ = 0.01 and f = 0.1 for all the approaches;
particularly, for the three models based on iosLDA, the a
priori of impact scaler proportion is fixed that y ¢ = 0.8 and
yS = 0.5, while the maximum value of the scalers L is set
to be ten for simplicity. Initially, all the topic assignments are
generated randomly, while the impact scalers (except for those
in iosLDA-binary) are sampled from a Gaussian distribution
with parameters 4 = 5 and 62 = (5/3), and then adjusted
to the nearest integer in [0, 10]. All the results reported in
comparisons are the average performance of each model after
ten repeated random experiments.

C. Object and Sentiment Classification

The performance of different approaches is first evaluated
by objective and subjective classifications. Five metrics are uti-
lized for the comparisons, i.e., accuracy, microaveraged Area
Under Curve (AUC), macroaveraged AUC, microaveraged F1,
and macro-averaged F1. It is worth noting that AUC has the
ability to depict the tradeoff between true-positive and false-
negative results in classification [42] and, therefore, is a good
supplement to other metrics, such as accuracy and the F1
score.

Tables III and IV, respectively, report the performance of
classification in terms of objective and subjective senses on all
the data sets, including their means and standard deviations.
It is worth noting that the iosLDA model and its variants
have the ability to simultaneously predict object labels and
sentiment labels, while other methods have to complete them
separately. The best result in each metric is shown in bold. It is
observed that methods with logistic regression obtain the worst

results, since logistic regression is fit for binary classification
tasks, but not so capable in the multiclass identification;
multiclass sLDA performs better than logistic regression but
falls behind with SVM, which probably due to the fact that
SVM is an extremely discriminative method, but the softmax
regression embedded in the model of multiclass sLDA is
less predictive. All the aforementioned methods employ BoW
or BoT representation to learn a classifier, while iosLDA-
single, iosLDA-binary, and iosLDA-complete adopt the BoDW
representation and outperform the traditional methods in terms
of almost every metric on the three data sets. Taking a closer
look at the performance of iosLDA and its two variants, it
is also observed that iosLDA-binary achieves better perfor-
mance than iosLDA-single to some extent, demonstrating the
necessity of, respectively, discovering discriminative power
of different words in delivering the objective and subjective
senses. Meanwhile, the complete version of the iosLDA model
has the best performance among all the approaches, which
indicates that it is more effective to model the various degree
of the discriminative power (i.e., the impact factors) than a
simple binary assumption on it.

D. Generalization Ability

The perplexity on testing data is commonly exploited in
measuring the generalization ability of topic models; gen-
erally, a lower perplexity indicates a better generalization
ability [8], which suggests higher performance in topic mod-
eling. The perplexity obtained over all the three data sets by
LDA, multiclass sLDA, iosLDA-binary, and iosLDA-complete
is shown in Fig. 3, where the performance of iosLDA-single is
omitted, since it is extremely close to iosLDA-complete. It is
observed that multiclass SLDA gains a higher perplexity than
the original LDA in most cases, for sLDA aims to find the
best representation over topics of the documents for classifi-
cation rather than the generalization of unseen documents. In
contrast, the iosLDA model (as well as its simplified variant),
though having the similar mechanism to sLDA in generating
the low-dimensional representation in a supervised manner,
still obtains the lowest perplexity regardless of the number of
topics. This may owe to the joint modeling of latent topics
and the auxiliary information in terms of both objective and
subjective senses, while the discovery of the discriminative
and trivial words partially eliminates the compromise between
topic modeling and the prediction of the response values.

E. Computational Efficiency

When the dimension of the latent representation (i.e., the
best number of topics) required by the hidden structure
of given data increases, traditional methods using the BoT
representation for discriminative tasks suffer from the rise
of computational complexity. Fig. 4 gives out the perfor-
mance in terms of the runningtime of traditional multiclass
sLDA for a single experiment on different data sets, which
is compared with iosLDA-binary and iosLDA-complete pro-
posed in this paper. Here, the performance of iosLDA-single
is omitted for that it is theoretically identical to the one
of iosLDA-complete. As a joint model for topic modeling
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TABLE III
COMPARISONS OF OBJECT CLASSIFICATION

BoW + LDA
+SVM

BoW iosLDA

+SVM +LR

LDA
+SVM

sLDA

+LR +LR single binary complete

Multi-Domain Sentiment Dataset

Accuracy 0.6870 0.6150 0.6825+0.0014 0.6185+0.0028 0.6943+0.0013 0.6231+0.0026 0.6352+0.0067 0.6881+0.0037 0.6950+0.0050 0.7076+0.0042
Micro-AUC 0.7996 0.7043 0.7957+0.0054 0.7099+0.0052 0.8090+0.0048 0.7279+0.0048 0.7518+0.0087 0.8122+.0074 0.8072+0.0081 0.8089+0.0076
Macro-AUC 0.7767 0.6716 0.7669+0.0028 0.6813+0.0075 0.783440.0027 0.6854+0.0072 0.7297 +0.0085 0.7697 +0.0060 0.7743+0.0062 0.7911+0.0070

Micro-F1  0.7896 0.7526 0.8113+0.0093 0.76354+0.0112 0.7952+0.0082 0.7842+0.0103 0.77681+0.0121 0.8009+0.0102 0.8201+0.0125 0.8270+0.0096

Macro-F1 0.7919 0.6694 0-7672i040084 0.6889i0‘0092 0~7920i0.0078 0~6947i0.0088 0~7138i0A0096 0~7398i0A0108 0.7764i0A0099 0.7996i0A0090

Flickr Dataset

Accuracy 0.5077 0.4532 0.528740.0041 0.5196-£0.0035 0.548640.0041 0.4870+0.0032 0.5453+0.0141 0.560240.0043 0.5725+0.0053 0.584210.0048
Micro-AUC 0.6163 0.5459 0.5587+0.0082 0.5485-+0.0097 0.569140.0085 0.578640.0104 0.5944 10 0122 0.6037+0.0084 0.627240.0099 0.6275+0.0093
Macro-AUC 0.6782 0.6225 0.66141.0078 0.6461+0.0081 0.663740.0084 0.6609+0.0084 0.6728 +0.0098 0.687540.0087 0.6928 10.0092 0.7128 +0.0081

Micro-F1  0.6280 0.6237 0.6917 +0.0095 0.683910.0087 0.696810.0077 0.667610.0079 0.705810.0107 0.7237+0.0006 0.7281+L0.0122 0.74110.0114

Macro-F1 0.7467 0.7355 0.8015+0.0079 0.8056+0.0081 0.8251+0.0076 0.7484+0.0080 0.815240.0114 0.8406+0.0077 0.8270-0.0100 0.8424+.0094

Twitter Dataset

Accuracy 0.4195 0.3356 0.4436+-0.0026 0.4076+0.0062 0.4531+0.0022 0.4329+0.0058 0.4369-+0.0070 0.4722+0.0045 0.4738+0.0030 0.4851+0.0034
Micro-AUC 0.5916 0.5453 0.6327+0.0038 0.5871+0.0069 0.641240.0038 0.6101+0.0066 0.6335+0.0075 0.6623+0.0048 0.654240.0057 0.681210.0049
Macro-AUC 0.7221 0.5944 0.7423 +0.0030 0.71364-0.0058 0.74281+0.0028 0.7182+0.0062 0.7189+0.0034 0.742410.0074 0.7517+0.0044 0.7785+0.0031

Micro-F1 0.5982 0.5272 0.6592+0.0055 0.60964-0.0035 0.665640.0047 0.6294 +0.0035 0.64874+0.0027 0.6691+0.0068 0.6743+0.0046 0.676240.0054

Macro-F1 0.7071 0.6367 0.7735i0‘0049 0.7348i0,0043 0.7744i0A0042 0.7615i0A0039 0.7681i0A0053 047728i0A0033 0‘7760i0A0035 0.7997i()‘0036

TABLE IV
COMPARISONS OF SENTIMENT IDENTIFICATION

BoW + LDA
+SVM

BoW iosLDA

+SVM +LR

LDA
+LR

sLDA

+SVM +LR single binary complete

Multi-Domain Sentiment Dataset

accuracy  0.7320 0.6225 0.7952+0.0023 0.7656+0.0016 0.8038+0.0025 0.7662+0.0016 0.7675+0.0031 0.79641+0.0032 0.8124+0.0040 0.8155+0.0017
Micro-AUC 0.8020 0.6684 0.86980.0039 0.8521+0.0056 0.8635+0.0038 0.862640.0060 0.8569+0.0087 0.8669+0.0066 0.8613+0.0071 0.8572+0.0075
Macro-AUC 0.7269 0.6717 0.7781+0.0044 0.7719+0.0065 0.79184+0.0042 0.7891+0.0069 0.7684+0.0096 0.7936+0.0054 0.792040.0090 0.7964 0 .0063
Micro-F1  0.8451 0.7857 0.8725+0.0078 0.866910.0090 0.8854+0.0083 0.8748+0.0087 0.86851+0.0123 0.8802+0.0094 0.8826-0.0099 0.8886--0.0092
Macro-F1 0.7453 0.6723 0.7806i0‘0085 0-7224i040081 0~7899i0.0087 0~7598i0.0083 0~7120i0A0088 0.7866i0A0080 0.7897i()‘0085 0-7916i0A0078

Flickr Dataset

accuracy 0.4837 0.4397 0-4970i040065 0.4789i0,0070 0~5039iOA0058 0~4801i0A0065 0.5015i0A0115 045068i0A0087 0'5151i0A0084 0.5208i()‘0073
Micro-AUC 0.6417 0.5929 0.6431+0.0096 0.6186-+0.0077 0.652240.0075 0.648910.0071 0.6402+0.0078 0.65224+0.0093 0.661240.0090 0.6680-0. 0094
Macro-AUC 0.7388 0.6902 0.7497 +-0.0079 0.7436+0.0080 0.756440.0062 0.7600+0.0073 0.7429+0.0087 0.761140.0079 0.7541+0.0098 0.7692+0 0065
Micro-F1  0.6046 0.5615 0.6642+0.0099 0.647640.0121 0.6643+0.0087 0.6591+0.0099 0.6683+0.0107 0.6725+0.0106 0.6803+0.0112 0.6814+0.0095
Macro-F1  0.6502 0.6109 0.7015+0.0097 0.70164+0.0114 0.7045+0.0089 0.7023+0.0105 0.70244+0.0093 0.7067+0.0114 0.7185+0.0102 0.7251+0.0081

Twitter Dataset

accuracy  0.7349 0.6879 0.745440.0027 0.7117+0.0034 0.78114+0.0030 0.7225+0.0031 0.7587+0.0051 0.7727+0.0035 0.7871+0.0032 0.7907+0.0029
Micro-AUC 0.6764 0.6102 0.7080+0.0041 0.6075-+0.0056 0.724240.0042 0.6093+0.0061 0.6281-+0.0044 0.6922+0.0062 0.7381+0.0070 0.7255+0.0055
Macro-AUC 0.5742 0.5346 0.6125+0.0026 0.586840.0039 0.625310.0026 0.5908-+0.0040 0.58234+0.0038 0.620640.0042 0.644210 0066 0.6216+0.0026
Micro-F1 0.7978 0.7153 0.8322+0.0046 0.814840.0066 0.8503+0.0041 0.8172+0.0068 0.844240.0040 0.8529+0.0054 0.8683+0.0069 0.868710.0046
Macro-F1 0.7380 0.6447 0.7526i0‘0033 0.6645i0,0074 0.8185i0A0031 0.6737i0A0071 0.7664i0A0054 047776i0A0030 O‘SIIZiOAoogg 0.8263i()‘0041

and document classification, iosLDA also proved to be more
efficient than the traditional methods, such as sLDA. With
the increase of the number of topics, the time consumption
of sLDA grows in a linear manner, while it takes far less
extra seconds for iosLDA to complete its computation. It is
because, though having more latent variables in its model, the
sampling of topics in iosLDA is actually identical to the stan-
dard LDA [as mentioned in the derivation of (1)], while the
sampling of impact factors (4) and (5) is also efficient enough.
As for sLDA, each probable topic assignment in a docu-
ment will change the topic proportions employed to generate
the response values (i.e., the object or sentiment labels),

making the sampling process much more complex than
iosLDA.

F. Discovery of Discriminative Words in Documents

We demonstrated before that different words in a given
document have their varying degree of power to describe the
facts (i.e., the objective senses) or convey the personal opinions
(i.e., the subjective senses) contained in this document, and
that iosLDA is capable to discern such discriminative power
of the words under a specified topic. Thus, it is necessary and
interesting to observe how our approach discover and measure
the discrimination hidden in the textual words. In Table V,
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Multi-Domain Sentiment Dataset

(@) (b)
Comparisons of perplexity obtained by different models on (a) Multidomain Sentiment Data Set, (b) Flickr Data Set, and (c) Twitter Data Set.

Fig. 3.

Flickr Dataset

Twitter Dataset

(©

The vertical axis is the perplexity and the horizontal axis is the number of topics. Note that the perplexity obtained by iosLDA-single on these data sets is

omitted for its high similarity to the one of iosLDA-complete.

Multi-Domain Sentiment Dataset

fosLDA-binary losLDA-complete

(a) (b)

Flickr Dataset

Twitter Dataset

complete soa fosLDA-binary losLDA-complete

(©)

Fig. 4. Performance in terms of the running-time of the traditional SLDA model compared with iosLDA-binary and iosLDA-complete for a single experiment
on (a) Multidomain Sentiment Data Set, (b) Flickr Data Set, and (c) Twitter Data Set. The vertical axis is the elapsed time in seconds and the horizontal axis

is the number of topics.

TABLE V
OBJECTIVELY DISCRIMINATIVE WORDS IN TERMS OF EACH TOPIC

topic: book topic: movie topic: camera topic: mobile phone

author  8.4423 acting 9.0196 kodak 8.9478 software 9.4017
diet 8.2746 character 8.9232 digital 8.2315  card 8.9712
written 82152  dvd  8.4063 product 8.1262 phone  8.4262
pages  8.1850 movie 8.1162 setup 7.9676 battery  8.1396
novel 79304 film  7.7558 power 7.6703 earphones 7.8751
book  7.9085 funny 7.7165 product 7.4953  audio 7.6149
interesting 7.5954 music 7.4233 camera 7.3832  smart 7.4981
opinions 7.4841 series 7.1150 card 7.3748  sony 7.4901
character 7.2010 season 6.6887 photos 6.9974 buy 7.4756
library  7.0926 watch 6.5792 quality 6.8594 camera  7.4506

the most discriminative words in delivering the objective
sense under four topics (i.e., “book,” “movie,” “camera,” and
“mobile phone,” which are automatically mined and manually
named) in the document data set (i.e., Multidomain Senti-
ment Data Set) are presented, while those with the greatest
discrimination in terms of the subjective sense are shown
in Table VI. The objectively and subjectively powerful words
are listed in the descending order in terms of their correspond-
ing discrimination, where the discrimination of one given word
v under the topic k in terms of objective or subjective sense
is evaluated as

nkvl
Nk.p

L
disc(k, w) = Z (8)

=0

Here, ny ,,; denotes the number of word v under topic k that

has an objectively or subjectively discriminative power [.
Several conclusions can be drawn from the results in

experiments. First, as observed in Tables V and VI, many

powerful words delivering an objective sense are nouns,
whereas those subjectively discriminative words are mainly
adjectives; however, several important nouns (e.g., “anything,”
“fan,” and “problem”) actively take part in the identification
of subjective senses, and vice versa (“interesting,” “funny,’
“smart,” and so on), for the product reviewers tend to use these
words in the description of a particular object or sentiment. In
the second place, while the objectively powerful words have
relatively higher discrimination (note that the maximum of
discriminative power is ten with regard to the settings of the
experiments), words that carrying subjective senses commonly
have discrimination that are more moderately (for five would
be the theoretical mean and the border line between discrimi-
native and trivial words), while iosLDA still mines out words
that are very useful in sentiment classification (e.g., “love,”
“beautiful,” and “expensive”). Finally, it is observed that some
words bear the objectively or subjective discriminative power
across various topics (like “power” and “card” in terms of
objective sense, or “well,” “price,” and “beautiful” in terms
of subjective sense), indicating the similarities between their
corresponding topics; meanwhile, some words are discovered
to be discriminative in terms of both objective and subjective
senses (e.g., “character,” “photos,” and “funny”), suggesting
that they not only describe a specific object, but also capable to
be the indicators of the sentiments. These conclusions are rea-
sonably in accord with human intuition, which demonstrates
the effectiveness of iosLDA to some degree.

G. Localization of Objective and Sentimental Regions

It is quite a natural ability for human beings to disentangle
a discriminative subset of sensory information from their
surrounding visual field before interpreting a complex scene,
which is often named as “focus of attention” or ‘“visual
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Fig. 5. Accuracy of detected discriminative visual words in terms of either objective or subjective sense on the training/testing set, respectively.

TABLE VI
SUBJECTIVELY DISCRIMINATIVE WORDS IN TERMS OF EACH ToPIC

topic: book topic: movie topic: camera  topic: mobile phone
great 7.8309 love 8.3411 beautiful 7.7640 expensive 8.0066
history 7.6622  like  7.7192 expensive 7.5857  well 7.4398
point 7.2609 good 7.5722 broken 7.4056 battery 7.2120
anything 6.9976 character 7.4872 photos 7.3612  great 7.0873
favorite 6.6811 boring 7.0960 cheap 7.2267 big 7.0358
food 6.6202 actress 6.9403 quickly 6.9912 beautiful 6.9364
well  6.5743 funny 6.7630 price 6.9414 power  6.8520
recipes 6.5037 great 6.7030  well  6.9277 broken  6.7423
really 6.4224  fan  6.6784 power 6.6703  price 6.6812
best 6.2684 story 6.4272 works 6.4210 problem 6.5449

attention” [43]. Various models have been proposed to mimic
such attractive characteristic of human eyes in order to acquire
relevant stimuli from images that may contain complex and
even obscure scenes. However, given one image, traditional
“focus of attention” or ‘“visual attention” is incapable of
detecting objective regions (usually objects) and visual effects
(usually emotions and sentiments) [44], [45]. The iosLDA
model proposed in this paper has the inherent ability to locate
both objective and sentimental regions in one given image. If
the visual words that represents one region in the given image
is identified as strongly objective (in practice, this equals to
that the objective impact scaler of this word is larger than five),
this region is detected to be a descriptor of the dominant object
(e.g., “face” or “car”) in the image. On the other hand, the
regions consisting of visual words that are strongly subjective
will be identified as a region that mainly describes the overall
sentiment (e.g., “sad” or “surprise”).

In order to validate the underlying ability of iosLDA, each
image in the Flickr Data Set is manually labeled with two
kinds of regions (i.e., objective region and sentimental region),
and every identified region is marked by a square bounding
box. The iosLDA is conducted over images from both training
set and testing set, and the detected discriminative regions are
compared with the ground truth. The detected discriminative
visual words in terms of either objective or subjective sense
are examined to see whether they are in the bounding boxes
provided by the ground truth. Fig. 5 gives out the detection
accuracy of discriminatively objective or subjective visual
words in terms of different ANPs on both training and testing
sets. In order to visually illustrate the detected object regions
and sentimental regions, we mark circles having discriminative
visual words to be the centers and radius of 25 pixels as
objective or sentimental regions, and then compare them with
the ground truth. Some comparisons are given in Fig. 6.

V. CONCLUSION

In this paper, a supervised topic model named as iosLDA
is proposed to discover the words that either discriminative
or trivial in delivering an objective or a subjective sense with
respect to their assigned topics. To achieve this goal, first, the
SPU model adopted in traditional topic models is modified
by incorporating it with a probabilistic generative process,
making it possible to obtain the novel BoDW representation
for the documents; after that, each document is defined to have
two different BODW representations with regard to objective
and subjective senses, respectively, which are employed in
the joint objective and subjective classification instead of the
traditional BoT representation. Results of various experiments
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Fig. 6. Tllustration of detected objective and sentimental regions by iosLDA. Columns from left to right are the ANPs, the original images, the ground truth
of objective regions, the detected objective regions, the ground truth of sentimental regions, and the detected sentimental regions. The four rows on the top
are generated during training, while the others are results from the testing set (best viewed in color).

indicate that: 1) the BoDW representation is more predictive the different objective and subjective power hidden in every
than the traditional ones; 2) iosLDA boosts the performance word; and 3) iosLDA has lower computational complexity than
of topic modeling via the joint discovery of latent topics and sLDA, especially under an increasing number of topics.
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APPENDIX
DERIVATIONS IN POSTERIOR INFERENCE

The full derivations of 1-3 are given in this section. First,
the joint distribution of iosLDA can be written as

p(@¥) = p(zla)p(w|z, B)
x px©ly 9, z, w)p(xS|y 5, z, w)
x p(yC1n?, w,x%)p(y*1n®, w,x%) (9

while the six terms in the right-hand side of (9) can be further
expanded that

pzla)
= [ paio)p@laras

U3 o) T1E Tk +nag)

= (10a)
d=1 H}f:l I'(ax) F(z;le(ak +nd,k))
p(wlz, B)
- / p(wlz. ) p(lf)dd
H —1 IBU) Hl‘)/:l r(ﬂv + nk,v) (10b)
it T T(Bo) T(X0_1(Bo + 1))
px%y %, z, w)
- / POz, w,19) p(A0]y ©)dr
_ ﬁ H F(Zfzo 7,°) I T(yf + ”kc,u,l) (10¢)
k=10v= I/~ T2 I )
p(xS1y5,z, w)
- / P |z, w, A8 p(A5]y H)drS
ﬁ H Zz “07) I~ r(y® +nl§,v,1) (10d)
k=1 0= 1H1 o) F(ZIL:OVIS+”k>v)
p(y°w,x%, 1%
D exp (Zl{v:d] ’7.00 0 .wd,ixdo,i) 10
(10¢e)
d=1 Zo 1 €Xp (Zz—l Mo wdzwd’ixdo,i)
p(ySlw, x5, 7%)
b e (s ny,, vaitd) o
= . (

S
d=1 2s=1 exp(Zizl ”S,wd,,' wd:ixg,i)
Then, it is able to derive rules for updating the Markov
chain. First, with other variables fixed, a specific topic assign-
ment z4; is sampled following the derivation that:
p(za,i =k|®—z,;, V)
_ p(®|Y)
P@ ey ) W) p(wa i) XX, ) p(wail B, za)
DY
p@¥) (11
p(q)*{zd,;,wd,,’} IT)
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After applying (10a)—(10f) into the derivation and omitting
terms that are equal in the fraction, it can be further simplified
that

p(z|a) p(w|p, z)
Pai =k|®_z;, V)
l “ p—a,ijla) p(W—ia,iy|B, 2—(a.i))
Ok + Nd k Puwa;i + Nkwa,i
Zk 1 (ak +na k) Z _1(,81) + 1)
+n .
ﬁ‘l;)d,, k,wd,, . (12)
szl(ﬂv + nk,v)

While the topic assignments z are determined, the rules

for generating the impact scalers can be obtained from

similar derivations. To sample the specific scaler x[?i, we
have

Pl =1®_0.¥)

o< (ak + na i)

P nly 05 2@y w—(a.iy)
Na 0O
exp (Z,-;’l nyf,w

¥ 1%, x9, w)

o o w -xo.
+nk>wd,i>l d,i d.i d>’)

X

L o o N,
ijo Yt kwa 2 o—1CXp (Zizdl ”f?,wd,,-wd,ixdo,i)
(13)

where [ € [0, L]. The generation of x 5 ; follows a similar rule.
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